THE ROLE OF GENOME EDITING TO BOOST BIOECONOMY SIGNIFICANTLY: OPPORTUNITIES AND CHALLENGES IN IN-DONESIA

Main Article Content

Bambang Prasetya
Satya Nugroho

Abstract

Decreasing in quantity and quality of land including available land for crop cultivations leads to many efforts to develop appropriate technology for genetic improvement through biotechnology approach. A novel trending tools to perform genetic modification intensively discussed is genome editing, which is developing rapidly. By applying genome editing, many researches have been performed successfully to improve the genetic trait of organism by modification of DNA with no traces of foreign gene in the final products. There are research reports concerning the development of climate-compatible crops, high productivity, high quality and specific trait for animals and fish, effective and specifically targeted biocatalytic processes by using microorganism, health-promoting foodstuffs and environmentally friendly production using genome editing approach. The genome editing approach will be an important alternative for modern breeding, which is different to the existing GMO technologies, which has already been developed for almost 30 years. Many assessments concluded that genome editing will catalyze important innovations in the bioeconomy. This paper will discuss about the global trends of genome editing and the opportunity and challenge faced in Indonesia. Moreover, it will also discuss the roles of the existing regulations and how they adapt to respond to this new technology.

Downloads

Download data is not yet available.

Article Details

Section
Articles

References

. Andersson M, Turesson H, Nicolia A, Fält A, Samuelsson M, Hofvander P. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep. 2017; 36: 117–28.

. Anonymous. Biotechnology Market Size, Share & Trends Analysis Report by Application (Health, Food & Agriculture, Natural Resources & Environment, Industrial Processing Bioinformatics), by Technology, and Segment Forecasts 2018 - 2025. 2020; Available online from: https://www.grandviewresearch.com/industry-analysis/biotechnology-market.

. Bahagiawati, Satyawan D, Santoso TJ. Genome-Edited Plants and the Challenges of Regulating Their Biosafety in Indonesia. Jurnal AgroBiogen. 2019; 15(2):93–106.

. Bappenas, Indonesia Biodiversity Action Plan (IBSAP) 2015-2020. 2016.

. BB Biogen. Laporan kinerja Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumber Daya Genetik Pertanian 2017. Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian-Bogor, BB Biogen. 2018.

. Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods. 2013; 9(1):39.

. Brinegar K, Yetisen AK, Choi S, Vallillo E, Ruiz-Esparza GU, Prabhakar AM, Khademhosseini A, Yun SH. “The commercialization of genome-editing technologies". Critical Reviews in Biotechnology. 2017; 37(7): pp. 924–932.

. Budiani A, Putranto RA, Riyadi, Sumaryono, Minarsih H, Faizah R. Transformation of oil palm calli using CRISPR/Cas9 system: Toward genome editing of oil palm. IOP Conference Series: Earth and Environmental Science. 2018; doi:10.1088/1755-1315/ 183/1/012003.

. Campbell NA, Reece JB. Biology. San Fransisco: Pearson Education. 2005; 87.

. Carlson R. “Estimating the biotech sector’s contribution to the US economy.” Nature Biotech. 2016; 34(3): 247-255.

. Cermák T, Curtin SJ, Humanes JG, Cegan R, Kono TJY, Konecna E, Belanto JJ, Starke CG, Mathre JW, Greenstein RL, Voytas, DF. A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants. The Plant Cell 2017; Vol. 29: 1196–1217.

. Char S, Neelakandan A, Nahampun H, Frame B, Main M, Spalding M, Becraft P, Meyers B, Walbot V, Wang K, Yang B. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol. J. 2017; 15 257–68.

. Cohen J. 'Any idiot can do it.' Genome editor CRISPR could put mutant mice in everyone's reach.” Science. 2016; Nov 3. 10.1126/science.aal0334.

. Codex Alimentarius Commission. "Principles and Guidelines on foods derived from biotechnology. 2003.

. Codex Alimentarius Commission. "Food Import & Export". 2004.

. Congressional Research Service. Advanced Gene Editing: CRISPR-Cas9. 2018; https:// crsreports.congress.gov R44824.

. Dance A, “Core Concept: CRISPR Gene Editing”; Proceedings of the National Academy of Sciences of the United States of America . 2015: 112, No. 20: 6245-6246.

. Donohoue PD, Barrangou R, Andrew P, May AP. Advances in Industrial Biotechnology Using CRISPR-Cas Systems. Trends in Biotechnology. 2018;Vol. 36, No. 2.

. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science 346. 2014; DOI: 10.1126/science.1258096.

. Doudna JA. The promise and challenge of therapeutic genome editing. Nature. 2020; Vol 578. https://doi.org/10.1038/s41586-020-1978-5.

. Dubois O, Gomez San Juan M. How sustainability is addressed in official bioeconomy strategies at international, national and regional levels. An overview. 2016; Available online from: www.fao.org/ publications.

. El-Mounadi K, Morales-Floriano ML, Garcia-Ruiz H. Principles, Applications, and Biosafety of Plant Genome Editing Using CRISPR-Cas9. Frontiers in Plant Science. 2020; Vol. 11. Article 56 www.frontiersin.org.

. Eckerstorfer MF, Heissenberger A, Reichenbecher W, Steinbrecher R, Waßmann F. An EU Perspective on Biosafety Considerations for Plants Developed by Genome Editing and Other New Genetic Modification Techniques (nGMs). Frontiers in Bioengineering and Biotechnology. 2019;Vol. 7. Article 31. Available online from: https://www.frontiersin.org.

. Eckerstorfer MF, Engelhard M, Heissenberger A, Simon S, Teichmann H. Plants Developed by New Genetic Modification Techniques—Comparison of Existing Regulatory Frameworks in the EU and Non-EU Countries. Front. Bioeng. Biotechnol. 2019; 7:26. doi: 10.3389/fbioe.2019.00026.

. Fan D, Liu T, Li C, Jiao B, , Shuang Li S> Hou Y, Luo K. Efficient CRISPR/Cas9- mediated Targeted Mutagenesis in Populus, 2015; Available online from: www.nature.com/scientificreports.

. Fitriyanti CSA, Suharsono, Santoso TJ. Molecular and Phenotypic Analyses of Inpari HDB/K15 F2 Lines Containing sd1 Mutant Gene Resulted from Genome Editing Method. Jurnal AgroBiogen. 2020; 16(1):35–44.

. Grand View Research “Genome Editing Market Size to Reach $8.1 Billion by 2025”. February 2017; Available online from: http://www.grandviewresearch.com/press-release/global-genome-editing- market.

. Ika. Mengenal CRISPR/Cas9, teknik baru pemuliaan tanaman. 2019; Available online from: https://ugm.ac.id/ id/ newsPdf/18552-mengenal-crispr-cas9-teknik-baru- pemuliaan-tanaman.

. Jia H, Nian W. Targeted genome editing of sweet orange using Cas9/sgRNA.PLoS One2014; 9 1–6.

. Jiang F, Doudna, JA. CRISPR-Cas9 Structures and Mechanisms. Annu. Rev.Biophys. 2017; 46: p. 505-529.

. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks D.Demonstration of CRISPR/Cas9/ sgRNA-mediated targeted gene modification in Arabidopsis, tobacco,sorghum and rice. Nucleic Acids Res. 2013; 41:1–12.

. Liu HJ, Jian L, Xu J, Zhang Q, Zhang M,Jin M, Peng Y, Yan J, Ha B, Jie LiuJ , Gao F, Liu X, Huang L, Wei W, Ding, Y, Yang X, Li Z, Zhang M, Sun J, Bai M, Song W, Chen H, Sun X, Li W, Lu Y, Liu Y, Zhao J, Qian Y, Jackson,D, Fernie AR, Yana J. High- Throughput CRISPR/Cas9 Mutagenesis Streamlines Trait Gene Identification in Maize. The Plant Cell. 2020; Vol. 32: 1397–1413.

. Martin-Laffon J, Kuntz M, Ricroch AE. Worldwide CRISPR patent landscape shows strong geographical biases. Nature Biotechnology. 2019; Vol. 37: 601–621.Available online from: www.nature.com/naturebiotechnology.

. OECD-FAO Agricultural Outlook 2020-2029. 2020; Available online from: http://www.agri-outlook.org/.

. Pan C, Ye L, Qin L, Liu X, He Y, Wang J, ChenL, Lu G. CRISPR/Cas9-mediate efficient and heritable targeted mutagenesis in tomato plants in the first and later generation. Science. 2016; Rep. 6 : 1–9.

. Purnhagen KP, Kok E, Kleter G, Schebesta H, Visser RGF, Wesseler J. EU court casts new plant breeding techniques into regulatory limbo. Nature Biotechnology. 2018; 36 (9):799–800. doi:10.1038/nbt.4251.

. Redick TP. "The Cartagena Protocol on biosafety: Precautionary priority in biotech crop approvals and containment of commodities shipments, Colorado Journal of International Environmental Law and Policy. 2007; 18: 51–116.

. Research and Markets, “CRISPR Market - Forecasts from 2018 to 2023,” August 2018; https://www.researchandmarkets.com/ research/zxx35w/global_crispr?w=5.

. Santoso TJ. Introduksi konstruk CRISPR- Cas9/Gen GA20 Ox-2 ke padi dan identifikasi mutan- mutan padi melalui analisis molekuler dan sekuensing. Laporan Akhir Penelitian TA 2016. 2016; Bogor, BB Biogen.

. Santoso TJ, K R Trijatmiko KR, S N Char SN, Yang B, Wang K. Targeted mutation of GA20ox-2 gene using CRISPR/Cas9 system generated semi-dwarf phenotype in rice. The 1st International Conference on Genetic Resources and Biotechnology IOP Publishing IOP Conf. Series: Earth and Environmental Science. 2020; 482 012027 doi:10.1088/17551315/482/ 1/012027.

. Schiemann J, Robienski J, Schleissing S, Spök A. Sprink T, Wilhelm RA. Plant Genome Editing – Policies and Governance. Frontiers in Plant Science. 2020; Vol 11: 284 www.frontiersin.org.

. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi J, Qiu J, Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 2013; 31 686–8.

. Songstad DD, Petolino JF, Voytas DF, Reichert NA. Genome Editing of Plants. Critical Reviews in Plant Sciences. 2017; 36(1):1-23.

. Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu Y, Zhao K. Enhanced rice blast resistance by CRISPR/Cas9-Targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One. 2016; 11 : 1–18.

. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 2014; 32 947–51.

. Waltz E. Gene-edited CRISPR mushroom escapes US regulation. Nature. [Online] 532 (7599), 293–293. doi:10.1038/nature. 2016;19754.

. Wei C, Liu J, Yua Z, ,Zhang B, Gao G, Jiao R. TALEN or Cas9 – Rapid, Efficient and Specific Choices for Genome Mo, ifications. Journal of Genetics and Genomics. 2013; Vol. 40 (6):281-289.

. Yin K, Gao C, Qiu J-L. Progress and prospects in plant genome editing. Nature Plants. 2017; 3:17107.

. Xu T, Li Y, Van Nostrand J, He Z, Zhou J. Cas9-based tools for targeted genome editing and transcriptional control. Appl. Environ. Microbiol. 2014; 80 1544–52.

. Yin K, Gao C, Qiu J-L. Progress and prospects in plant genome editing. Nature Plants. 2017; 3:17107.

. Zadoks J. Global Genetically Modified (GMO) Food Market Analysis Opportunity Outlook 2021. 2020; Available online from: https://jeffzadoks0.medium.com/global-genetically-modified-gmo- food-market-analysis-opportunity-outlook-2021-a91d7e7837f2.

. Zion Market Research, “Global CRISPR Genome Editing Market Will Grow USD 4,271.0 Million by 2024,” August 2018; Available online from: https://globenewswire.com/news-release/2018/09/04/1565088/0/en/Global-CRISPR-Genome-Editing-Market-Will-Grow-USD-4-271-0-Million-by-2024-Zion-Market-Research.html.

. Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong, D. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. 2019; Mol. Breed. 39, 47. doi: 10.1007/s11032-019-0954-y.

. Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X. Targeted mutagenesis in rice using CRISPR-Cas system. 2013; Cell Res. 23, 1233–1236. doi: 10.1038/cr.2013.123.

. Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X. Generation of high-Amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. 2017; Front. Plant Sci. 8, 298. doi: 10.3389/ fpls.2017.00298.

. Li M, Li X, Zhou Z, Wu P, Fang M, Pan X. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/ Cas9 System. 2016; Front. Plant Sci. 7, 377. doi: 10.3389/fpls.2016.00377

. Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom JS. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J. S.. 2015; 82, 632–643. doi: 10.1111/tpj.12838.

. Yao L, Zhang Y, Liu C, Liu Y, Wang Y, Liang D. OsMATL mutation induces haploid seed formation in indica rice. 2018; Nat. Plants 4, 530–533. doi: 10.1038/s41477-018-0193-y.

. Endo M, Mikami M, Toki S. Biallelic gene targeting in rice. 2016; Plant Physiol. 170, 667–677. doi: 10.1104/pp.15.01663.

. Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H. Engineering Herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of Acetolactate synthase. 2016; Mol. Plant 9, 628–631. doi: 10.1016/ j.molp.2016.01.001

. Zhou H, He M, Li J, Chen L, Huang Z, Zheng S. Development of commercial thermo-sensitive Genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. 2016; Sci. Rep. 6, 37395. doi: 10.1038/srep37395.