INTERSEPSI, LOLOSAN TAJUK, DAN ALIRAN BATANG EMPAT JENIS POLONG-POLONGAN UNTUK KONSERVASI TANAH DAN AIR

##plugins.themes.academic_pro.article.main##

Setyawan Agung Danarto
Titut Yulistyarini

Abstrak

Jenis polong-polongan (suku Fabaceae) banyak digunakan dalam kegiatan rehabilitasi lahan terdegradasi sebagai tanaman pionir dan penyubur tanah. Kinerja hidrologi pohon jenis polong-polongan dalam kaitannya dengan konservasi tanah dan air belum banyak diketahui. Tujuan penelitian ini adalah untuk mengevaluasi besarnya lolosan tajuk, aliran batang dan intersepsi empat jenis polong-polongan terseleksi di Kebun Raya Purwodadi. Empat jenis pohon polong-polongan lokal yaitu Pterocarpus indicus, Cassia javanica, Senna siamea, dan Saraca indica diamati kinerja hidrologinya selama 20–30 hari hujan. Hasil penelitian menunjukkan bahwa keempat jenis polong-polongan yang memiliki model arsitektur tajuk yang sama yaitu troll dengan variasi karakteristik morfologi pohon dan daun menghasilkan variasi nilai pada intersepsi tajuk, lolosan tajuk dan aliran batang. Intersepsi dan lolosan tajuk keempat jenis pohon mempunyai nilai seimbang berkisar 30–70%, dengan aliran batang yang dihasilkan kecil berkisar 1–2%. Berdasarkan kinerja hidrologinya tersebut, penanaman keempat jenis polong-polongan untuk konservasi tanah dan air memerlukan upaya pengendalian lolosan tajuknya.

##plugins.themes.academic_pro.article.details##

Cara Mengutip
Danarto SA, Yulistyarini T. 2021. INTERSEPSI, LOLOSAN TAJUK, DAN ALIRAN BATANG EMPAT JENIS POLONG-POLONGAN UNTUK KONSERVASI TANAH DAN AIR. Buletin Kebun Raya 24(3): 126-135. https://doi.org/10.14203/bkr.v24i3.759

Referensi

  1. Ahmed A, Tomar JMS, Mehta H, Alam NM, Chaturvedi OP. 2015. Influence of canopy architecture on stemflow in agroforestry trees in Western Himalayas. Current Science 109(4): 759–764.
  2. Ahmed A, Tomar JMS, Mehta H, Kaushal R, Deb D, Chaturvedi OP, Mishra PK. 2017. Throughfall, stemflow and interception loss in Grewia optiva and Morus alba in north west Himalayas. Tropical Ecology 58(3): 507–514.
  3. Asdak C. 2014. Hidrologi dan pengelolaan daerah aliran sungai. UGM Press, Yogyakarta.
  4. Budiastuti S. 2006. Pohon dan sistem agroforestri dalam area resapan air: peran tajuk dan strata tajuk sebagai pengendali sistem hidrologi. Master Tesis. Fakultas Pertanian. Universitas Brawijaya.
  5. Cusack D, Montagnini F. 2004. The role of native species plantations in recovery of understory woody diversity in degraded pasturelands of Costa Rica. Forest Ecology and Management 188: 1–15. DOI: https://doi.org/10.1016/S0378-1127(03)00302-5.
  6. Danarto SA, Yulistyarini T. 2019. Selection of lowland plants with high potention of carbon stock for rehabilitation of degraded lands. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia 5(1): 33–37. DOI: https://doi.org/10.13057/psnmbi/ m050107.
  7. Darmayanti AS, Fiqa AP. 2017. The canopy structure and its impact on hydrological performance of five local trees species grown in the Purwodadi Botanic Garden. Journal of Tropical Life Sciences 7(1): 40–47. DOI: http://dx.doi.org/10.11594/jtls.07.01.07.
  8. Dietz J, Ho¨lscher D, Leuschner C, Hendrayanto. 2006. Rainfall partitioning in relation to forest structure in differently managed montane forest stands in Central Sulawesi, Indonesia. Forest Ecology and Management 237: 170–178. DOI: https://doi.org/10.1016/j.foreco.2006.09.044.
  9. Dinata RJ. 2007. Intersepsi pada berbagai kelas umur tegakan karet (Hevea brasiliensis).
  10. Skripsi. Departemen Kehutanan. Fakultas Pertanian. Universitas Sumatera Utara.
  11. Ekowati G, Indriyani S, Azrianingsih R. 2017. Model arsitektur percabangan beberapa pohon di Taman Nasional Alas Purwo. Jurnal Biotropika (5)1: 27–35. DOI: http://dx.doi.org/10.21776/ub.biotropika.2017.005.01.5.
  12. Geißler C, Nadrowski K, Kühn P, Baruffol M, Bruelheide H, Schmid B, Scholten T. 2013. Kinetic energy of throughfall in subtropical forests of se china–effects of tree canopy structure, functional traits, and biodiversity. PloS one (8)2: e49618. DOI: https://doi.org/10.1371/journal.pone.0049618.
  13. Goebes P, Bruelheide H, Härdtle W, Kröber W, Kühn P, Li Y, Seitz S, von Oheimb G, Scholten T. 2015. Species-specific effects on throughfall kinetic energy in subtropical forest plantations are related to leaf traits and tree architecture. PLoS one 10(6): e0128084. DOI: https://doi.org/10.1371/journal. pone.0128084.
  14. IBM. 2016. IBM statistics for windows version 24.0. Armonk NY: IBM Corp.
  15. Jaquetti RK, Goncalves JFC. 2017. Carbon and nutrient stocks of three Fabaceae trees used for forest restoration and subjected to fertilization in Amazonia. Anais da Academia Brasileira de Ciências 89: 1761–1771. DOI: https://doi.org/ 10.1590/0001-3765201720160734.
  16. Komara LL, Choesin DN, Syamsudin TS. 2016. Plant diversity after sixteen years post coal mining in East Kalimantan, Indonesia. Biodiversitas 17 (2): 531–538. DOI: https://doi.org/10.13057/biodiv/ d170223.
  17. Lacombe G, Valentin C, Sounyafong P, Ribolzi O. 2018. Linking crop structure, throughfall, soil surface conditions, run off and soil detachment: 10 land uses analyzed in Northern Laos. Science of The Total Environment 616: 1330–1338. DOI: 10.1016/j.scitotenv.2017.10.185.
  18. Levia DF, Herwitz S. 2005. Interspecific variation of bark water storage capacity of three deciduous tree species in relation to stemflow yield and solute flux to forest soils. Catena 64: 117–137. DOI: https://doi.org/10.1016/j.catena.2005.08.001.
  19. Levia DF, Michalzik B, Näthe K, Bischoff S, Richter S, Legates DR. 2015. Differential stemflow yield from European beech saplings: the role of individual canopy structure metrics. Hydrological Processes 29: 43–51. DOI: https://doi.org/10.1002/hyp. 10124.
  20. Levia DF, Germer S. 2015. A review of stemflow generation dynamics and stemflow-environment interactions in forests and shrublands. Review of Geophysics 53: 673–714. DOI: 10.1002/ 2015RG000479.
  21. Li X, Qingfu X, Jianzhi N, Salli D, Natalie S, van Doorn, Xinxiao Y, Baoyuan X, Xizhi L, Kebin Z, Jiao L. 2015. Process-based rainfall interception by small trees in Northern China: The effect of rainfall traits and crown structure characteristics. Agricultural and Forest Meteorology 218: 65–73. DOI: https://doi.org/10.1016/j.agrformet.2015.11.017.
  22. Mali SS, Sarkar PK, Naik SK, Singh AK, Bhatt BP. 2020. Predictive models for stemflow and throughfall estimation in four fruit tree species under hot and sub-humid climatic region. Hydrology Research. 51(1): 47–64. DOI: https://doi.org/10.2166/ nh.2019.052.
  23. Mechram S, Chairani S, Zaki A. 2012. Perbandingan nilai intersepsi pohon mahoni (Swietania mahagoni) dan pohon pinus (Casuarina cunninghamia). Rona Teknik Pertanian (5)2: 368–372. DOI: https://doi.org/10.17969/rtp.v5i2.235.
  24. Naharuddin, Bratawinata A, Hardwinarto S, Pitopang R. 2016. Curahan tajuk pada tegakan model arsitektur pohon aubreville, leeuwenberg dan stone di tipe penggunaan lahan kebun hutan Sub Daerah Aliran Sungai Gumbasa. Warta 4(1): 28–33.
  25. Nuraeni E, Setiadi D, Widyatmoko D. 2014. Kajian arsitektur pohon dalam upaya konservasi air dan tanah: studi kasus Altingia excelsa dan Schima wallichii di Taman Nasional G. Gede Pangrango. Jurnal Biologi Indonesia 10(1): 17–26. DOI: 10.14203/jbi.v10i1.325.
  26. Park A, Cameron JL. 2008. The influence of canopy traits on throughfall and stemflow in five tropical trees growing in a Panamanian plantation. Forest Ecology and Management 255(5-6): 1915–1925. DOI: https://doi.org/10.1016/j.foreco.2007.12.025.
  27. Pelawi SF. 2009. Intersepsi pada berbagai kelas umur tegakan kelapa sawit (Elaeis guineensis). Skripsi. Departemen Kehutanan, Fakultas Pertanian, Universitas Sumatera Utara.
  28. Ratner B. 2009. The correlation coefficient: Its values range between or do they?. Journal of Targeting, Measurement and Analysis for Marketing 17(2): 139-142.
  29. Robiansyah I. 2011. Effect of quadrat shapes on measurement of tree density and basal area: a case study on Scots Pine (Pinus silvestris L.). Buletin Kebun Raya 14(2): 45-52.
  30. Rosmarkam A, Yuwono NW. 2002. Ilmu kesuburan tanah. Penerbit Kanisius, Yogyakarta.
  31. Sahid. 2009. Penafsiran luas bidang dasar tegakan Pinus merkusii menggunakan foto udara di Kesatuan Pemangku Hutan (KPH) Kedu Perum Perhutani unit 1 Jawa Tengah. Forum Geografi (23)2: 112–122.
  32. Siles P, Vaast P, Dreyer E, Harmand JM. 2010. Rainfall partitioning into throughfall, stemflow and interception loss in a coffee (Coffea arabica L.) monoculture compared to an agroforestry system with Inga densiflora. Journal of Hydrology 395: 39–48. https://doi.org/10.1016/j.jhydrol.2010.10.005.
  33. Soendjoto, Dharmono MA, Mahrudin MK, Riefani D. Triwibowo. 2014 . Plant richness after revegetation on the reclaimed coal mine land of PT. Adaro Indonesia, South Kalimantan. Jurnal Manajemen Hutan Tropika 20(3): 150–158. DOI: 10.7226/jtfm. 20.3.142.
  34. Sofiah S, Fiqa AP. 2010. Karakterisasi tumbuhan lokal untuk konservasi tanah dan air, studi kasus pada kluwih (Artocarpus altilis Park. ex Zoll. Forsberg) dan bambu hitam (Gigantochloa atroviolaceae Widjaja). Berkala Hayati Edisi Khusus 5: 29–32.
  35. Su L, Zhao C, Xu W, Xie Z. 2019. Hydrochemical fluxes in bulk precipitation, throughfall, and stemflow in a mixed evergreen and deciduous broadleaved forest. Forests 10(6): 507. DOI: https://doi.org/ 10.3390/f10060507.
  36. Sumono A, Ismail, Emawati H. 2016. Derajat kestabilan tegakan karet (Havea brasiliensis) di Kelurahan Margomulyo Kecamatan Samboja Kabupaten Kutai Kertanegara Provinsi Kalimantan Timur. Jurnal Agrifor XV(2): 147-154. DOI: doi.org/10.31293/ af.v15i2.2071.
  37. Supangat BS, Sudira P, Supriyono H, Poedjirahajoe E. 2012. Studi intersepsi hujan pada hutan tanaman Eucalyptus pellita di Riau. Jurnal Agritech 32(3): 318–324. DOI: https://doi.org/10.22146/agritech. 9610.
  38. van Noordwijk M, Agus F, Suprayogo D, Hairiah K, Pasya G, Verbist B, Farida A. 2004. Peranan agroforestri dalam mempertahankan fungsi hidrologi Daerah Aliran Sungai (DAS). Agrivita (26)1: 1–8.
  39. Varela RP, Garcia GAA, Garcia CM, Ambal AM. 2016. Survival and growth of plant species in agroforestry system for progressive rehabilitation of mined nickel sites in Surigao del Norte, Philippines. Annals of Studies in Science and Humanity (2)1: 16–25.
  40. Zhang SY, Li XY, Li L, Huang YM, Zhao GQ, Chen HY. 2015. The measurement and modelling of stemflow in an alpine Myricaria squamosal community. Hydrological Processes 29: 889–899. DOI: https://doi.org/10.1002/hyp.10201.
  41. Zhang YF, Wang XP, Hu R, Pan YX, Paradeloc M. 2015. Rainfall partitioning into throughfall, stemflow and interception loss by two xerophytic shrubs within a rain-fed re-vegetated desert ecosystem, northwestern China. Journal of Hydrology 527: 1084–1095. DOI: https://doi.org/10.1016/j.jhydrol. 2015.05.060.
  42. Zhou J, Yu K, Lin G, Wang Z. 2021. Variance in tree growth rates provides a key link for completing the theory of forest size structure formation. Journal of Theoretical Biology 529, 110857: 1–6. DOI: https://doi.org/10.1016/j.jtbi.2021.110857.